Title
题目
Ensemble transformer-based multiple instance learning to predictpathological subtypes and tumor mutational burden from histopathologicalwhole slide images of endometrial and colorectal cancer
《基于集成Transformer的多实例学习预测子宫内膜癌和结直肠癌的病理亚型及肿瘤突变负荷》
01
文献速递介绍
尽管有许多有前景的临床结果数据,癌症免疫治疗目前仅对少数癌症患者有效,临床试验评估的不同癌症指示中,平均受益患者约为20%。由于并非所有患者都会对癌症免疫治疗产生反应,一些患者甚至会出现严重的不良免疫反应,因此迫切需要预测患者对癌症治疗反应的生物标志物。这对于当前的临床治疗和该领域的进一步进展至关重要(Jones等,2020)。
DNA错配修复(MMR)系统识别并修复DNA复制过程中发生的插入、缺失和碱基错配(Jiricny,2006)。修复缺陷主要是由四个主要蛋白中的一个或多个失活所致:MutL同源物1(MLH1)、编码MutS同源物2(MSH2)、编码MutS同源物6(MSH6)和编码后减数分配增加2(PMS2)。错配修复缺陷(dMMR)可以是遗传性或获得性(散发性)的,导致DNA中的两种主要突变类型:全基因组的错义突变和微卫星区域长度的变化(Hewish等,2010;Vilar和Gruber,2010)。dMMR最早在结直肠癌(CRC)中发现,但它也可以发生在许多其他类型的肿瘤中,包括子宫内膜癌(EC),后者通常表现出dMMR(Walk等,2020)。dMMR和微卫星不稳定性(MSI)检测已被确立,用于预测对特定免疫治疗靶标(如PDL1)的反应。Le等假设PD-1阻断在CRC中的疗效与MMR状态相关,从而启动了一个2期临床试验,评估帕博利珠单抗在dMMR或MMR功能正常(pMMR)肿瘤患者中的有效性。此外,非CRC患者中具有dMMR的患者,包括EC患者,也表现出了较高的总体反应率(ORR)(Le等,2015)。
肿瘤突变负荷(TMB)是测量体细胞癌突变的广泛性,通常表示为每百万碱基对的突变数。尽管TMB与dMMR和MSI相关,但它们之间并不完全重合;大多数dMMR/MSI高(MSI-H)肿瘤具有高TMB,但并非所有高TMB肿瘤都是dMMR/MSI-H(Alexandrov等,2013)。突变负荷也已被证明是预测免疫检查点抑制剂(ICI)反应的指标,适用于多种肿瘤类型,这表明高TMB可用于识别所有癌症中最适应免疫治疗的患者亚群,而低TMB患者则不适应。这突显了TMB作为个体患者免疫治疗反应预测生物标志物的潜力(Goodman等,2017)。
Aastract
摘要
In endometrial cancer (EC) and colorectal cancer (CRC), in addition to microsatellite instability, tumormutational burden (TMB) has gradually gained attention as a genomic biomarker that can be used clinicallyto determine which patients may benefit from immune checkpoint inhibitors. High TMB is characterized by alarge number of mutated genes, which encode aberrant tumor neoantigens, and implies a better response toimmunotherapy. Hence, a part of EC and CRC patients associated with high TMB may have higher chancesto receive immunotherapy. TMB measurement was mainly evaluated by whole-exome sequencing or nextgeneration sequencing, which was costly and difficult to be widely applied in all clinical cases. Therefore, aneffective, efficient, low-cost and easily accessible tool is urgently needed to distinguish the TMB status of ECand CRC patients. In this study, we present a deep learning framework, namely Ensemble Transformer-basedMultiple Instance Learning with Self-Supervised Learning Vision Transformer feature encoder (ETMIL-SSLViT),to predict pathological subtype and TMB status directly from the H&E stained whole slide images (WSIs) inEC and CRC patients, which is helpful for both pathological classification and cancer treatment planning. Ourframework was evaluated on two different cancer cohorts, including an EC cohort with 918 histopathologyWSIs from 529 patients and a CRC cohort with 1495 WSIs from 594 patients from The Cancer Genome Atlas.The experimental results show that the proposed methods achieved excellent performance and outperformingseven state-of-the-art (SOTA) methods in cancer subtype classification and TMB prediction on both cancerdatasets. Fisher’s exact test further validated that the associations between the predictions of the proposedmodels and the actual cancer subtype or TMB status are both extremely strong (𝑝 < 0.001). These promisingfindings show the potential of our proposed methods to guide personalized treatment decisions by accuratelypredicting the EC and CRC subtype and the TMB status for effective immunotherapy planning for EC and CRCpatients.
在子宫内膜癌(EC)和结直肠癌(CRC)中,除了微卫星不稳定性(MSI)外,肿瘤突变负荷(TMB)逐渐成为一个备受关注的基因组生物标志物,可以用于临床上确定哪些患者可能从免疫检查点抑制剂中受益。高TMB的特征是大量的突变基因,这些基因编码异常的肿瘤新抗原,并且通常意味着对免疫疗法有更好的反应。因此,部分高TMB的EC和CRC患者可能有更高的机会接受免疫治疗。TMB的测量主要通过全外显子组测序或下一代测序进行评估,但这些方法成本较高,且在所有临床病例中难以广泛应用。因此,急需一种有效、高效、低成本且易于获取的工具,用于区分EC和CRC患者的TMB状态。
在本研究中,我们提出了一种深度学习框架——集成Transformer的多实例学习与自监督学习视觉Transformer特征编码器(ETMIL-SSLViT),用于直接从EC和CRC患者的H&E染色全切片图像(WSI)中预测病理亚型和TMB状态,这对于病理分类和癌症治疗计划都具有重要意义。我们的框架在两个不同的癌症队列中进行了评估,包括来自癌症基因组图谱(TCGA)中,来自529名患者的918张EC组织病理WSI和来自594名患者的1495张CRC组织病理WSI。实验结果表明,所提出的方法在癌症亚型分类和TMB预测方面取得了优异的表现,并且在两个癌症数据集上优于七种现有的先进方法(SOTA)。费舍尔精确检验进一步验证了所提出的模型的预测与实际癌症亚型或TMB状态之间的关联极为强烈(𝑝 < 0.001)。这些有前景的结果显示,我们提出的方法在通过准确预测EC和CRC亚型及TMB状态来指导个性化治疗决策方面具有潜力,从而为EC和CRC患者的免疫治疗规划提供有效支持。
Method
方法
This study introduces a DL method, namely Ensemble Transformerbased Multiple Instance Learning with Self-Supervised Learning VisionTransformer feature encoder (ETMIL-SSLViT), to predict pathologicalsubtype and TMB status directly from the H&E stained WSIs in EC andCRC patients. All the slides were directly downloaded from the TCGAplatform. For data pre-processing, as in 2024, Faryna et al. (2024) havecompared four SOTA automatic augmentation methods from generalcomputer vision and investigated their capacity to improve domaingeneralization in histopathology, showing that RandAugment (Cubuket al., 2020) has as a simple way to get state-of-the-art performancein histopathology, therefore the proposed methods were tested withand without the data augmentation pre-process using RandAugment.Firstly, we built a Vision Patch Segmentation Module (VPSM) as shownin Section 3.1 to rapidly extract non-overlapping foreground patches,which helps enhance efficiency and accuracy in WSI analysis (Fig. 1(a)).Secondly, we presented a Self-Supervised Learning Vision TransformerFeature Encoder Module (SSLViT-FEM) in Section 3.2 that integratesa pre-trained ViT-S/16 with SSL techniques to extract features fromWSIs (Fig. 1(b)). SSLViT-FEM captures global salient features of imagesto resolve long-range connections between the content of images andfully utilizes the attention mechanism to incorporate global contextinformation into image features, enhancing the accuracy of the extracted features without significantly increasing computational cost.Thirdly, we presented a Transformer-based Multiple Instance Learningmodel (TMIL) in Section 3.3 to address the issue that traditional MILmethods often assume that instances are independent and identicallydistributed (i.i.d.), which neglects the correlations among instances. Inthe proposed TMIL, each WSI is treated as a bag, and patches extractedfrom the WSI are treated as instances (Fig. 1(d)). Unlike traditional MILmethods, our proposed TMIL utilized the self-attention mechanism ofTransformers to model the relationships between instances. The selfattention mechanism allows the model to assign different attentionweights to each instance, effectively capturing the dependencies andinteractions between them. This mechanism ensures that each instancecan be influenced by others, fully reflecting the correlations and interactions among instances. This framework enhances the representationby integrating both morphological and spatial information from theinstances. The results in this study shows that our proposed methodoutperforms all the latest SOTA MIL methods (Lu et al., 2021a; Xianget al., 2023; Campanella et al., 2019; Lu et al., 2021b) (see Tables 1 and2). Fourthly, an Early Stop Mechanism (ESM) as shown in Section 3.4was built based on the Cross Entropy loss to help prevent overfittingand save computational resources and time as Cross Entropy measuresthe discrepancy between the predicted probability distribution by themodel and the actual label distribution, thereby directly reflectingthe model’s effectiveness in predicting categories (Fig. 1(c.ii)). Fifthly,we devised an Ensemble Framework (EF) using the bagging strategywith a Two-stage Optimal Model Finder method (T-OMF) as shownin Sections 3.5 and 3.6, respectively. The proposed ensemble improves variance reduction, predictive performance, model robustnessand reduces overfitting.
本研究提出了一种深度学习方法——基于集成Transformer的多实例学习与自监督学习视觉Transformer特征编码器(ETMIL-SSLViT),用于直接从子宫内膜癌(EC)和结直肠癌(CRC)患者的H&E染色全切片图像(WSI)中预测病理亚型和肿瘤突变负荷(TMB)状态。所有图像数据直接从TCGA平台下载。数据预处理方面,参考了2024年Faryna等人的研究,比较了四种最先进的自动增强方法,发现RandAugment(Cubuk等人,2020)在组织病理学领域中能够实现优异的性能,因此我们在研究中使用了包括和不包括数据增强的RandAugment预处理方法。
首先,我们构建了视觉补丁分割模块(VPSM),如图1(a)所示,用于快速提取非重叠的前景补丁,有助于提高WSI分析的效率和准确性。其次,提出了自监督学习视觉Transformer特征编码模块(SSLViT-FEM),如图1(b)所示,结合了预训练的ViT-S/16和自监督学习技术来提取WSI的特征。SSLViT-FEM能够捕获图像的全局显著特征,并利用Transformer的自注意力机制解决图像内容之间的长程连接问题,从而在不显著增加计算成本的情况下,增强了特征提取的准确性。
接着,提出了一种基于Transformer的多实例学习(TMIL)模型,如图1(d)所示,解决了传统多实例学习方法通常假设实例是独立同分布(i.i.d.)的问题,忽略了实例之间的相关性。在我们的TMIL方法中,每个WSI被视为一个袋子,而从WSI中提取的补丁则视为实例。与传统的多实例学习方法不同,TMIL利用Transformer的自注意力机制来建模实例之间的关系,使得模型能够为每个实例分配不同的注意力权重,从而有效地捕获实例间的依赖性和相互作用。
此外,为了防止过拟合并节省计算资源和时间,我们还提出了基于交叉熵损失的早停机制(ESM),如图1(c.ii)所示。交叉熵损失衡量模型预测的概率分布与实际标签分布之间的差异,直接反映了模型在分类任务中的有效性。最后,设计了一个集成框架(EF),使用了袋装策略和双阶段最优模型查找方法(T-OMF),如图1©所示,进一步提高了模型的鲁棒性、预测性能并减少了过拟合。
研究结果表明,所提出的方法在癌症亚型分类和TMB预测方面优于最新的七种最先进的方法(见表1和表2)。
Results
结果
Our framework was evaluated on two different cancer cohorts,including 918 histopathology WSIs of 529 EC patients and 1495 WSIsof 594 CRC patients from TCGA, for both prediction of cancer subtypesand TMB status (see Section 4.1 and Fig. 4). The evaluation wasconducted in three parts. Firstly, we compared the proposed methodsin cancer subtyping and TMB prediction in EC and CRC cohorts withseven SOTA DL methods, which have achieved remarkably success inthe field of computational pathology, including ClassicMIL (Campanellaet al., 2019), Wang et al. (2023d), Improved_InceptionV3_MS (Wanget al., 2023e), CLAM (Lu et al., 2021b), TOAD (Lu et al., 2021a), TransMIL (Shao et al., 2021), and MRAN (Lu et al., 2021a). All the resultsshow that the proposed methods achieved excellent performances andoutperformed seven SOTA methods in cancer subtype classification andTMB prediction on both cancer datasets (see Section 4.2, Tables 1 and2).Section 4.2.7 demonstrates the interpretability of the proposedmethod in application of TMB prediction in EC and CRC samples. Ourproposed models predict slides by identifying and focusing on regionsof WSIs that can predict whether the tumor has a high mutationalburden (high attention score) and disregarding regions with low relevance for TMB prediction in two datasets, including CRC and EC sampleslides, respectively (see Fig. 5(a) and (b)). Importantly, our proposedmodels are able to differentiate TMB traits using weakly supervisedlearning with slide-level labels, despite not getting specific pixel- orpatch-level annotation during training.In Section 4.3, six ablation studies were performed to examinethe efficacy of two components in the proposed ETMIL framework,including comparisons of different (1) model assessment metrics in theproposed T-OMF module (see Table 3), (2) feature encoders to buildSelf-Supervised Learning Vision Transformer Feature Encoder Module(SSLViT-FEM) (see Table 4), (3) SSL-based backbones (see Table 5), (4)optimizers for model training (see Table 7), (5) loss functions for modeltraining (see Table 8), and (6) assessment of the proposed methodcapacity for generalization using five different datasets (see Table 9).
我们的框架在两个不同的癌症队列中进行了评估,分别包括来自TCGA的529名EC患者的918张组织病理WSI和594名CRC患者的1495张WSI,用于癌症亚型和TMB状态的预测(参见第4.1节和图4)。评估分为三个部分。首先,我们将提出的方法与七种最先进的深度学习(SOTA)方法进行了对比,这些方法在计算病理学领域取得了显著成功,包括ClassicMIL (Campanella et al., 2019)、Wang et al. (2023d)、Improved_InceptionV3_MS (Wang et al., 2023e)、CLAM (Lu et al., 2021b)、TOAD (Lu et al., 2021a)、TransMIL (Shao et al., 2021)和MRAN (Lu et al., 2021a)。所有结果显示,所提出的方法在癌症亚型分类和TMB预测方面均取得了优秀的表现,并且在这两个癌症数据集上优于七种最先进的方法(参见第4.2节,表1和表2)。
第4.2.7节展示了我们提出方法在EC和CRC样本中TMB预测的可解释性。我们的方法通过识别并关注WSI中的特定区域来预测肿瘤是否具有高突变负担(高注意力得分),同时忽略对TMB预测低相关的区域。这些预测结果在CRC和EC样本中均表现出良好的效果(参见图5(a)和(b))。值得注意的是,尽管在训练过程中没有进行具体的像素或块级标注,我们的方法仍能通过弱监督学习区分TMB特征。
在第4.3节中,我们进行了六项消融研究,评估了ETMIL框架中两个关键组件的有效性,包括:(1)提出的T-OMF模块中不同模型评估指标的比较(参见表3);(2)用于构建自监督学习Vision Transformer特征编码器模块(SSLViT-FEM)的特征编码器的比较(参见表4);(3)基于SSL的骨架比较(参见表5);(4)模型训练的优化器比较(参见表7);(5)模型训练的损失函数比较(参见表8);(6)使用五个不同数据集评估所提出方法的泛化能力(参见表9)。
Figure
图
Fig. 1. Overview of the proposed Ensemble Transformer-based Multiple Instance Learning with Self-Supervised Learning Vision Transformer feature encoder (ETMIL-SSLViT): (a) aVision Patch Segmentation Module (VPSM). (b) Self-Supervised Learning Vision Transformer Feature Encoder Module (SSLViT-FEM). © Ensemble Framework (EF) with Two-stageOptimal Model Finder (T-OMF). (c.i) Stage 1 OMF. (c.ii) Early Stop Mechanism (ESM). (c.iii) Stage 2 OMF. (d) Transformer-based Multiple Instance Learning (TMIL).
图1. 提出的集成Transformer基础的多实例学习与自监督学习视觉Transformer特征编码器(ETMIL-SSLViT)的概述:(a) 视觉补丁分割模块(VPSM)。(b) 自监督学习视觉Transformer特征编码器模块(SSLViT-FEM)。© 集成框架(EF)与双阶段最优模型查找器(T-OMF)。(c.i) 第一阶段OMF。(c.ii) 早停机制(ESM)。(c.iii) 第二阶段OMF。(d) 基于Transformer的多实例学习(TMIL)。
Fig. 2. Area Under the Receiver Operating Characteristic curves (AUROC curves) for assessment of (a) EC subtype classification (aggressive vs non-aggressive), (b) TMB prediction in the aggressive EC subtype © TMB prediction in the non-aggressive EC subtype.
图 2. 受试者工作特征曲线下面积(AUROC 曲线)评估:(a) 子宫内膜癌(EC)亚型分类(侵袭性 vs 非侵袭性),(b) 侵袭性子宫内膜癌亚型中的肿瘤突变负荷(TMB)预测,© 非侵袭性子宫内膜癌亚型中的肿瘤突变负荷(TMB)预测。
Fig. 3. Area Under the Receiver Operating Characteristic curves (AUROC curves) for assessment of (a) CRC subtype classification (mucinous vs non-mucinous), (b) TMB prediction in the non-mucinous CRC subtype, © TMB prediction in the mucinous CRC subtype.
图 3. 用于评估的受试者工作特征曲线下面积(AUROC 曲线): (a) CRC亚型分类(粘液性 vs 非粘液性), (b) 非粘液性 CRC亚型中的TMB预测, © 粘液性 CRC亚型中的TMB预测。
Fig. 4. Data information of two type cancer datasets. (a) TCGA EC cohort and CRC cohort of the data, (b) Image diversity of the data, © Subtypes distribution, (d) Lengthdistribution in pixels, (e) Race distribution and (f) Age distribution.
图 4. 两种癌症数据集的数据概览。(a) TCGA内膜癌(EC)队列和结直肠癌(CRC)队列数据;(b) 数据的图像多样性;© 亚型分布;(d) 像素长度分布;(e) 种族分布;(f) 年龄分布。
Fig. 5. Model attention heatmaps in prediction of (a) CRC TMB and (b) EC TMB.
图 5. 模型在预测 (a) CRC TMB 和 (b) EC TMB 时的注意力热图。
Table
表
Table 1Evaluation in Cancer Subtyping and TMB prediction of EC.
表1. 子宫内膜癌(EC)的癌症亚型分类和肿瘤突变负荷(TMB)预测评估.
Table 2Evaluation in Cancer Subtyping and TMB prediction of CRC
表 2 CRC(结直肠癌)亚型分类和TMB预测的评估
Table 3Quantitative evaluation to compare model selection mechanism in classification of EC subtypes.
Table 3 定量评估:用于比较EC亚型分类中模型选择机制的性能。
Table 4Comparison of the performance of the proposed methods using different feature extractor methods in EC samples.
表 4 使用不同特征提取方法在 EC 样本中的性能比较。
Table 5Comparison of the proposed framework with various SSL-based backbones in classification of EC subtypes.
表 5 提出框架与各种基于自监督学习(SSL)的骨干网络在 EC 亚型分类中的性能比较。
Table 6Run time analysis of the proposed framework using different SSL-based backbones
表 6 提出框架在使用不同基于自监督学习(SSL)的骨干网络时的运行时间分析。
Table 7Comparison of the proposed method with different optimizer in classification of EC subtypes.
表 7 提出方法与不同优化器在EC亚型分类中的比较。
Table 8Comparison of the proposed method with different loss function in classification of EC subtypes
表 8 提出方法与不同损失函数在EC亚型分类中的比较。
Table 9Evaluation of the proposed methods on five independent source sites in classification of EC subtypes
表 9 提出方法在五个独立数据源上的评估,针对EC亚型分类。